• 首页期刊简介编委会刊物订阅专栏专刊电子刊学术动态联系我们English
引用本文:茹晨雷,潘在晨,徐靖,刘志风,杨继鸿,李振皓.基于近红外光谱的铁皮石斛粉末实时放行测试方法[J].中国现代应用药学,2025,42(17):42-50.
Ru Chenlei,Pan Zaichen,Xu Jing,Liu Zhifeng,Yang Jihong,Li Zhenhao.Near-infrared spectroscopy for real-time release testing of Dendrobium officinale powder.[J].Chin J Mod Appl Pharm(中国现代应用药学),2025,42(17):42-50.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 104次   下载 80 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于近红外光谱的铁皮石斛粉末实时放行测试方法
茹晨雷1, 潘在晨1, 徐靖2, 刘志风2, 杨继鸿1, 李振皓1
1.浙江寿仙谷植物药研究院有限公司;2.浙江寿仙谷医药股份有限公司
摘要:
目的 铁皮石斛相关产品的加工过程中,粉末是一种重要的中间产物,多糖是其主要的质控指标。放行测试要求粉末多糖达到标准后才能放行进入下游工序继续生产。然而,现行的多糖检测方法主要为苯酚-硫酸法,检测时间较长,客观上造成了生产效率低下。为解决这个问题,本研究提出了一种基于近红外光谱的铁皮石斛粉末实时放行测试方法。方法 首先,获取粉末的短波近红外光谱、长波近红外光谱和多糖含量数据。其次,使用预处理、特征波段和定量模型相结合的方式处理光谱信号。然后,使用预处理融合算法继续处理数据质量更高的长波近红外光谱数据。最后,优选多糖含量快速预测模型,生成预测值分布图,估计概率风险,并决定当前批次粉末中间品是否放行。结果 预处理融合算法在测试集上预测多糖含量的均方根误差(Root Mean Squared Error of Prediction,RMSEP)为1.297%,决定系数()为0.924,预测值和真值的误差较小。预测值的分布图能够直观地量化特定样品的概率风险。结论 所提方法可应用于铁皮石斛粉末的放行测试,缩短生产周期,并有望推广至其他药食两用产品。
关键词:  铁皮石斛  粉末  多糖  实时放行测试  预处理融合  概率风险
DOI:
分类号:R284.1;R917.101
基金项目:浙江省“尖兵”研发攻关计划项目(2025C01133)
Near-infrared spectroscopy for real-time release testing of Dendrobium officinale powder.
Ru Chenlei1, Pan Zaichen1, Xu Jing2, Liu Zhifeng2, Yang Jihong1, Li Zhenhao1
1.Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd;2.Zhejiang ShouXianGu Pharmaceutical Co., Ltd
Abstract:
ABSTRACT:OBJECTIVE In Dendrobium officinale product processing, powder serves as a key intermediate, with polysaccharide levels being crucial for quality control. Current polysaccharide detection, primarily using the phenol-sulfuric acid method, is time-consuming and hampers production efficiency. To address this, the study proposes a real-time release test for Dendrobium officinale powder using near-infrared spectroscopy. METHODS Initially, data on the short-wave and long-wave near-infrared spectrum and polysaccharide content of the powder were collected. The spectral signals were then processed using preprocessing, characteristic band, and a quantitative model. A pretreatment fusion algorithm enhanced the long-wave NIR spectral data quality. Finally, a rapid prediction model for polysaccharide content was chosen, generating a predicted value distribution map, estimating probabilistic risk, and determining the release of the current batch of powder intermediates.. RESULTS The RMSEP was 1.297% and the was 0.924, indicating a small error between predicted and true values. The predicted value distribution effectively quantifies the probabilistic risk of a sample.. CONCLUSION The proposed method can be used for Dendrobium officinale powder release tests, reducing production time, and may be applicable to other medicinal and edible products.
Key words:  dendrobium officinale  powder  polysaccharides  real-time release testing  pretreatment fusion  probabilistic risk
扫一扫关注本刊微信