| 引用本文: | 张军琳,李军,兰娅菲,茅宁莹.基于文献计量的AI在医药领域应用研究现状与热点分析[J].中国现代应用药学,2025,42(10):145-153. |
| zhangjunlin,li jun,lan ya fei,mao ning ying.Bibliometric - based Analysis of the Current Research Status and Hotspots of AI Applications in the Medical Field[J].Chin J Mod Appl Pharm(中国现代应用药学),2025,42(10):145-153. |
|
| 摘要: |
| 摘要 目的:本研究旨在通过文献计量分析,探讨人工智能(AI)在医药领域的应用研究,揭示该领域的研究热点与发展趋势,为后续深入研究提供科学依据和参考。方法:本文检索Web of Science核心合集数据库中的相关文献,检索时间范围为建库至2024年11月18日。采用CiteSpace 6.4.R1软件,对文献发文量、发文国家、发文机构、载文期刊、共引网络及关键词进行数据可视化分析。结果:共纳入24039篇相关文献。AI应用于医药领域相关文献发文量总体呈现上升趋势;中美两国的发文数量远超其他国家和地区,总发文量占比达51.978%(12495篇);UNIVERSITY OF CALIFORNIA SYSTEM是发文量最多的机构(703篇);《SCIENTIFIC REPORTS》是载文量最多的期刊(500篇);关键词分析结果显示,相关文献高频关键词包括machine learning、artificial intelligence、prediction、drug discovery等;所有关键词形成了6个聚类,包括#0 drug discovery、#1 virtual reality等;最新突现词包括breast cancer、dynamics、inflammation、growth。结论:近年来,AI在医药领域的应用研究逐渐成为关注重点,研究热点和前沿集中于机器学习、虚拟现实等技术在疾病诊断、疾病治疗、药物发现和药物设计中的应用。未来,我国学者需紧跟研究热点与前沿,在不断深入研究的同时注重提升研究质量和国际影响力。 |
| 关键词: 人工智能 医药 文献计量分析 |
| DOI: |
| 分类号:R284.1;R917.101?????? |
| 基金项目:2024年度江苏高校哲学社会科学研究重大项目(2024SJZD128);2024年度江苏省社科应用研究精品工程重点资助项目(24SYA-029);2024年度江苏省社科应用研究精品工程一般资助项目(24SYB-015) |
|
| Bibliometric - based Analysis of the Current Research Status and Hotspots of AI Applications in the Medical Field |
|
zhangjunlin, li jun, lan ya fei, mao ning ying
|
|
China Pharmaceutical University
|
| Abstract: |
| ABSTRACT: OBJECTIVE This study aims to explore the application of artificial intelligence (AI) in medicine through bibliometric analysis, reveal the research hotspots and development trends in this field, and provide a scientific basis and reference for subsequent in-depth research. METHODS This paper searched the relevant literature in the Web of Science Core Collection database, and the search time range was from the establishment of the database to November 18, 2024. CiteSpace 6.4.R1 software was used to visualize and analyze the data on the number of publications, country of publication, institution of publication, journal of publication, co-citation network, and keywords. RESULTS A total of 24,039 relevant literatures were included. The overall trend of the number of literature issuance related to AI applied to the pharmaceutical field showed an upward trend; The number of articles issued by China and the United States far exceeds that of other countries and regions, with the total number of articles accounting for 51.978% (12,495 articles); UNIVERSITY OF CALIFORNIA SYSTEM is the organization with the largest number of articles (703 articles); SCIENTIFIC REPORTS is the journal with the largest number of articles (500 articles); the results of keyword analysis show that The high-frequency keywords in related literature include machine learning, artificial intelligence, prediction, drug discovery, etc.; all keywords form six clusters, including #0 drug discovery, #1 virtual reality, etc.; the most recent emergent words include breast cancer, dynamics, inflammation, growth. CONCLUSION In recent years, the application of AI in the field of medicine has gradually become the focus of attention, and the hotspots and frontiers of research focus on the application of machine learning, virtual reality, and other technologies in disease diagnosis, disease treatment, drug discovery, and drug design. In the future, our scholars need to keep up with the research hotspots and frontiers and focus on improving the research quality and international influence while continuously deepening the research. |
| Key words: artificial intelligence medicine bibliometric analysis |