• 首页期刊简介编委会刊物订阅专栏专刊电子刊学术动态联系我们English
引用本文:雷敬卫,刘建营,白雁,陈随清.近红外光谱法快速测定山橿药材中球松素含量[J].中国现代应用药学,2011,28(11):1000-1003.
LEI Jingwei, LIU Jianying, BAI Yan, CHEN Suiqing.Determination of Pinostrobin in Lindera Reflexa Helms by Near-infrared Spectroscopy Technique[J].Chin J Mod Appl Pharm(中国现代应用药学),2011,28(11):1000-1003.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2611次   下载 1957 本文二维码信息
码上扫一扫!
分享到: 微信 更多
近红外光谱法快速测定山橿药材中球松素含量
雷敬卫,刘建营,白雁,陈随清
河南中医学院药学院,郑州 450008
摘要:
目的 利用近红外光谱(NIR)技术建立一种山橿中球松素含量的快速分析方法。方法 以HPLC分析值为参照,采用近红外漫反射光谱技术采集66份山橿样品的近红外漫反射光谱,结合偏最小二乘法(PLS)建立了球松素含量的定量分析模型。结果 所建模型的相关系数(R2)、外部验证均方差(RMSEP)和内部交叉验证均方差(RMSECV)分别为0.992 31、0.076 5和0.450 0;验证集样品的NIR测得值与药典法测得值进行配对T检验,差异无统计学意义。结论 本方法操作简便、无污染、结果准确可靠,可用于山橿中球松素含量的快速测定。
关键词:  近红外光谱技术  山橿  球松素  定量分析模型
DOI:
分类号:
基金项目:河南省科技攻关项目(0523031800);河南省教育厅科技攻关项目(2008A360016)
Determination of Pinostrobin in Lindera Reflexa Helms by Near-infrared Spectroscopy Technique
LEI Jingwei, LIU Jianying, BAI Yan, CHEN Suiqing
Henan University of Traditional Chinese Medicine, Zhengzhou 450008, China
Abstract:
OBJECTIVE To establish a rapid analytical method for pinostrobin in Lindera reflexa Helms by near-infrared(NIR) diffuse reflectance technique. METHODS Collecting NIR spectra by NIR diffuse reflectance spectroscopy with HPLC values anlysis as a reference to build calibration models by the partial least square(PLS). RESULTS The correlation and coefficients of the PLS calibration models of NIR spectroscopy for phillyrin was 0.992 31, the root-mean-square error of prediction(RMSEP) was 0.076 5, the root-mean-square error of cross-validation (RMSECV) was 0.450 0; There was no statistical difference between NIR prediction of validation samples and HPLC measurements tested by paried sample T test. CONCLUSION The method is rapid, nondestructive and accurate, and can be applied to the fast determination of pinostrobin in extractum forsythiae siccus.
Key words:  near-infrared (NIR) diffuse reflectance spectroscopy  Lindera reflexa Hemsl  pinostrobin  quantitative analysis model
扫一扫关注本刊微信