引用本文: | 姜松国,徐磊,柴冬梅,朱辉武,林铮.石杉碱甲保护人脑微血管内皮细胞损伤的体外实验研究[J].中国现代应用药学,2015,32(3):277-281. |
| JIANG Songguo,XU Lei,CHAI Dongmei,ZHU Huiwu,LIN Zheng.Protect Effects of Huperzine A on Methylglyoxal Induced Injury in the Cultured Human Brain Microvascular Endothelial Cell in Vitro Experimental Study[J].Chin J Mod Appl Pharm(中国现代应用药学),2015,32(3):277-281. |
|
摘要: |
目的 体外实验研究石杉碱甲对人脑微血管内皮细胞(human brain microvascular endothelial cells,HBMEC)损伤的保护作用和机制。方法 在培养的HBMEC上,利用丙酮醛诱导细胞损伤,通过MTT检测细胞活力,LDH、SOD活性试剂盒及caspase-3活性试剂盒检测细胞损伤情况,观察石杉碱甲的作用和机制。结果 石杉碱甲呈浓度依赖地保护MGO诱导的细胞损伤,在10-5 mol?L-1时呈最大保护作用。丙酮醛能诱导HBMEC的SOD活性下降,而石杉碱甲(10-6,10-5 mol?L-1)能逆转这种作用。进一步研究发现石杉碱甲能抑制丙酮醛诱导的caspase-3活性上升。结论 石杉碱甲对丙酮醛诱导的HBMEC的损伤具有保护作用,这可能与其抗自由基和抗凋亡作用有关。 |
关键词: 石杉碱甲 脑微血管内皮细胞 丙酮醛 凋亡 |
DOI: |
分类号: |
基金项目:浙江省自然科学基金(Y2100294);浙江省卫生厅项目(2011KYA073,2014KYA100);浙江省中医药项目(2014ZA067) |
|
Protect Effects of Huperzine A on Methylglyoxal Induced Injury in the Cultured Human Brain Microvascular Endothelial Cell in Vitro Experimental Study |
JIANG Songguo1, XU Lei2, CHAI Dongmei3, ZHU Huiwu1, LIN Zheng2
|
1.The Fourth People’s Hospital of Jiangshan, Jiangshan 324100, China;2.The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;3.The Rural Hospital of Shangyu Town, Jiangshan 324123, China
|
Abstract: |
OBJECTIVE To evaluate the effects of huperzine A on the methylglyoxal (MGO) induced injury in the cultured human brain microvascular endothelial cell (HBMEC). METHODS HBMEC cell line was chosen to induce MGO injury. Cell vitality was measured by using MTT, LDH release, SOD activity were tested by kits. Cell apoptosis was measured by caspase 3 activity. RESULTS Huperzine A dose-dependently protected MGO induced HBMEC injury. At 10-5 mol?L-1 of huperzine A manifested the maximum effects. MGO increased SOD activity, which were reversed by pretreatment of venlafaxine (10-6 and 10-5 mol?L-1). Furthermore, huperzine A (10-6 and 10-5 mol?L-1) also decreased MGO induced caspase 3 activity increasing. CONCLUSION Huperzine A protected MGO induced injury in the cultured HBMEC, which may be involved its anti-oxidation and anti-apoptosis activity. |
Key words: huperzine A human brain microvascular endothelial cell methylglyoxal apoptosis |