• 首页期刊简介编委会刊物订阅专栏专刊电子刊学术动态联系我们English
引用本文:闫辉辉,朱智慧,刘伦铭,方晴霞,王刚,赵华军.基于小波神经网络时间序列模型预测血药浓度的研究[J].中国现代应用药学,2016,33(11):1417-1422.
YAN Huihui,ZHU Zhihui,LIU Lunming,FANG Qingxia,WANG Gang,ZHAO Huajun.Prediction of Plasma Concentration Based on Wavelet Neural Network Time Series Model[J].Chin J Mod Appl Pharm(中国现代应用药学),2016,33(11):1417-1422.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2699次   下载 2232 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于小波神经网络时间序列模型预测血药浓度的研究
闫辉辉1, 朱智慧1, 刘伦铭1, 方晴霞1,2, 王刚3, 赵华军1
1.浙江中医药大学药学院, 杭州 310053;2.浙江省人民医院, 杭州 310014;3.杭州市第一人民医院, 杭州 310006
摘要:
目的 基于小波神经网络时间序列模型预测阿司匹林血药浓度,评价模型的适应性。方法 对4组家兔灌胃,分别于0.15,0.25,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,6.0,13.0,22.0 h时间点获取血药浓度数据,利用计算机软件MATLAB对其中3组实验数据进行网络训练,利用训练好的网络对剩下的1组血药浓度数据进行预测。之后联合药动学,判断其房室模型和药动学特点。结果 模拟仿真结果与实际数据基本符合,网络的绝对平均误差范围在0.3%~5.39%,在统计学允许误差范围之内。联合药动学仿真证明了阿司匹林的血管外给药药动学特点是二室模型。结论 小波神经网络时间序列模型在预测阿司匹林血药浓度时有较好拟合能力和优良预测能力,同时与药动学的结合更为现代临床药理的研究起到积极的推动作用。
关键词:  小波神经网络  时间序列  血药浓度  药动学  MATLAB
DOI:10.13748/j.cnki.issn1007-7693.2016.11.015
分类号:
基金项目:
Prediction of Plasma Concentration Based on Wavelet Neural Network Time Series Model
YAN Huihui1, ZHU Zhihui1, LIU Lunming1, FANG Qingxia1,2, WANG Gang3, ZHAO Huajun1
1.College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China;2.Zhejiang Provincial People's Hospital, Hangzhou 310014, China;3.Hangzhou First People's Hospital, Hangzhou 310006, China
Abstract:
OBJECTIVE To evaluate the adaptability of wavelet neural network time series model through predicting the concentration of aspirin in blood. METHODS Four groups of rabbits were fed with aspirin, and plasma concentration data were obtained in 0.15, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 13.0, 22.0 h time points. Then through the software MATLAB, 3 groups of experimental data were trained by network, and the trained network was used to predict the plasma concentration data of the left one group. Its characteristics of the compartment model and pharmacokinetic were determined by combination of pharmacokinetics. RESULTS The simulation results were consistent with the actual data, and the absolute mean error of the network was in the range of 0.3%-5.39%. The pharmacokinetics of aspirin in two compartment model was proved by combination of pharmacokinetic simulation. CONCLUSION Wavelet neural network time series model in predicting the plasma concentration of aspirin are with good fitting capability and excellent predictive ability, at the same time with the combination of pharmacokinetics plays a more positive role in promoting modern clinical pharmacology research.
Key words:  wavelet neural network  time series  plasma concentration  pharmacokinetics  MATLAB
扫一扫关注本刊微信