引用本文: | 蒋程,寿旦,俞忠明,许平翠,王绪平,陈礼平,张晓芹,王娜妮.基于紫外光谱和偏最小二乘回归算法的畲药地稔中浸出物和6种活性成分快速预测方法[J].中国现代应用药学,2020,37(13):1574-1579. |
| JIANG Cheng,SHOU Dan,YU Zhongming,XU Pingcui,WANG Xuping,CHEN Liping,ZHANG Xiaoqin,WANG Nani.Rapid Prediction of Extractum and Six Active Components in Traditional She Medicine-Melastoma Dodecandrum Lour. by Ultraviolet Spectroscopy and Partial Least Squares Regression Algorithm[J].Chin J Mod Appl Pharm(中国现代应用药学),2020,37(13):1574-1579. |
|
|
|
本文已被:浏览 1592次 下载 994次 |
码上扫一扫! |
|
基于紫外光谱和偏最小二乘回归算法的畲药地稔中浸出物和6种活性成分快速预测方法 |
蒋程1,2, 寿旦2, 俞忠明2, 许平翠2, 王绪平2, 陈礼平3, 张晓芹3, 王娜妮2
|
1.浙江省立同德医院药学部, 杭州 310012;2.浙江省中医药研究院, 杭州 310007;3.丽水市中医院, 浙江 丽水 323000
|
|
摘要: |
目的 建立基于紫外光谱的畲药地稔中浸出物、没食子酸、阿魏酸、芦丁、槲皮素、木犀草素、山奈酚的快速分析方法。方法 测定地稔水提液中的浸出物和6种化合物浓度,采集紫外光谱。采用SIMCA-P+软件,分别建立浸出物、6种化合物浓度与紫外光谱的偏最小二乘回归模型。采用Visual Basic开发应用软件,将所建模型嵌套入软件,为同时快速分析待测溶液中浸出物和6种化合物浓度提供工具。结果 验证集浸出物和6种化合物浓度的预测均方根误差分别为39.1,0.263,19.0,93.8,0.894,0.593,0.896 ng·mL-1,预测值和真实值的相关系数均>0.9,并通过软件在10 s内得到了浸出物和6种化合物浓度的预测结果。结论 本方法可为地稔的快速质量评价提供依据。 |
关键词: 地稔 紫外光谱 偏最小二乘回归 |
DOI:10.13748/j.cnki.issn1007-7693.2020.13.007 |
分类号:R284.1 |
基金项目:浙江省中医药(中西医结合)重点学科建设项目(2017-XK-A50);浙江省丽水市重点科技创新团队建设计划项目(2018cxtd06) |
|
Rapid Prediction of Extractum and Six Active Components in Traditional She Medicine-Melastoma Dodecandrum Lour. by Ultraviolet Spectroscopy and Partial Least Squares Regression Algorithm |
JIANG Cheng1,2, SHOU Dan2, YU Zhongming2, XU Pingcui2, WANG Xuping2, CHEN Liping3, ZHANG Xiaoqin3, WANG Nani2
|
1.Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China;2.Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;3.Lishui Traditional Chinese Medicine Hospital, Lishui 323000, China
|
Abstract: |
OBJECTIVE To establish a rapid method for the determination of the extractum, gallic acid, ferulic acid, rutin, quercetin, luteolin and kaempferol in traditional She medicine-Melastoma dodecandrum by ultraviolet spectroscopy. METHODS The contents of extractum and 6 components in aqueous extract solutions of Melastoma dodecandrum were detected and the ultraviolet spectra were collected. The partial least squares regression models of extractum and 6 components were established separately with the use of SIMCA-P+ software. The software was devised by using Visual Basic, embeded the model into software. This method provided a convenient tool for the simultaneous and rapid determination of extractum and 6 components in unknown samples. RESULTS The root mean square error of predictions for extractum and 6 components were 39.1, 0.263, 19.0, 93.8, 0.894, 0.593, 0.896 ng·mL-1, respectively. The correlation coefficients between the predicted and the reference values for validation set were >0.9 and the predicted contents of extractum and 6 components were calculated automatically within 10 s. CONCLUSION This study provides a rapid method for the quality evaluation of Melastoma dodecandrum Lour. |
Key words: Melastoma dodecandrum Lour. ultraviolet spectroscopy partial least squares regression |
|
|
|
|