• 首页期刊简介编委会刊物订阅专栏专刊电子刊学术动态联系我们English
引用本文:冉靖,徐慧,张巍,白雪媛.基于高光谱成像技术和机器学习模型的破壁灵芝孢子粉化学成分无损检测及建模研究[J].中国现代应用药学,2025,42(23):117-126.
Ran Jing,XU Hui,ZHANG Wei,BAI Xue-yuan.Nondestructive Testing and Modeling of Chemical Composition of Sporoderm-broken Spores of Ganoderma Lucidum Based on Hyperspectral Imaging Technology and Machine Learning Model[J].Chin J Mod Appl Pharm(中国现代应用药学),2025,42(23):117-126.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 15次   下载 0 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于高光谱成像技术和机器学习模型的破壁灵芝孢子粉化学成分无损检测及建模研究
冉靖, 徐慧, 张巍, 白雪媛
长春中医药大学
摘要:
目的 研究基于高光谱成像技术结合机器学习模型对破壁灵芝孢子粉化学成分的无损检测方法。方法 通过采集来自不同产地的破壁灵芝孢子粉样本的高光谱数据,利用BP神经网络(BPNN)、极限学习机(ELM)和决策树(DT)模型对水分、多糖、三萜和麦角甾醇的含量进行预测分析。为了提高模型的预测精度,本研究采用遗传算法(GA)进行特征波长选择,并结合主成分分析(PCA)进行降维处理。结果 实验结果表明,基于GA-ELM和GA-DT模型的预测性能最佳,多个成分的预测决定系数(R2)均超过0.94,表现出优秀的预测能力。结论 本研究验证了高光谱成像技术结合机器学习方法对破壁灵芝孢子粉化学成分快速无损检测的可行性,并为破壁灵芝孢子粉的质量评价提供了新的思路和方法。
关键词:  破壁灵芝孢子粉  高光谱成像  机器学习模型  无损检测  化学成分预测
DOI:
分类号:
基金项目:吉林省自然科学基金(YDZJ202401020ZYTS);道地药材饮片加工关键技术、配方颗粒研发及大健康产品开发(2021YFD1600903-02);“益身康健”——开创国民中老年中药养生新时代(S202310199092X)
Nondestructive Testing and Modeling of Chemical Composition of Sporoderm-broken Spores of Ganoderma Lucidum Based on Hyperspectral Imaging Technology and Machine Learning Model
Ran Jing, XU Hui, ZHANG Wei, BAI Xue-yuan
Changchun University of Chinese Medicine
Abstract:
ABSTRACT OBJECTIVE In this paper, a non-destructive detection method of chemical composition of sporoderm-broken spores of Ganoderma lucidum based on hyperspectral imaging technology combined with machine learning model was studied. METHODS In this study, hyperspectral data of sporoderm-broken spores of Ganoderma lucidum samles from different origins were collected, and BP neural network (BPNN), extreme learning machine (ELM) and decision tree (DT) models were used to predict the contents of water, polysaccharides, triterpenoids and ergosterols. In order to improve the prediction accuracy of the model, genetic algorithm (GA) was used for feature wavelength selection, and principal component analysis (PCA) was used for dimensionality reduction. RESULTS The experimental results show that the prediction performance based on GA-ELM and GA-DT models is the best, and the prediction determination coefficient (R2) of multiple components is more than 0.94, showing excellent prediction ability. CONCLUSION This study verifies the feasibility of hyperspectral imaging combined with machine learning methods for rapid non-destructive detection of the chemical composition of sporoderm-broken spores of Ganoderma lucidum, and provides new ideas and methods for the quality evaluation of sporoderm-broken spores of Ganoderma lucidum.
Key words:  sporoderm-broken spores of Ganoderma lucidum  hyperspectral imaging  machine learning model  non-destructive testing  chemical composition prediction
扫一扫关注本刊微信