• 首页期刊简介编委会刊物订阅专栏专刊电子刊学术动态联系我们English
引用本文:潘在晨,仲怿,方玲,祁哲晨,徐靖,梁宗锁,李振皓.基于高光谱技术的灵芝孢子粉破壁率快速检测方法研究[J].中国现代应用药学,2024,41(6):760-766.
PAN Zaichen,ZHONG Yi,FANG Ling,QI Zhechen,XU Jing,LIANG Zongsuo,LI Zhenhao.A Rapid, Hyperspectral-based Method for Determining Sporoderm-broken Rate of Ganoderma Lucidum Spore Powder[J].Chin J Mod Appl Pharm(中国现代应用药学),2024,41(6):760-766.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 480次   下载 627 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于高光谱技术的灵芝孢子粉破壁率快速检测方法研究
潘在晨1, 仲怿2, 方玲2, 祁哲晨1, 徐靖3, 梁宗锁1, 李振皓2
1.浙江理工大学生命科学与医药学院,浙江省植物次生代谢调控重点实验室,杭州 310018;2.浙江寿仙谷植物药研究院有限公司,杭州 310012;3.浙江省珍稀植物药工程技术研究中心,浙江 武义 321200
摘要:
目的 利用高光谱技术结合化学计量学建立灵芝孢子粉破壁率快速无损的检测方法。方法 采集不同破壁率灵芝孢子粉样品的高光谱图像,选定感兴趣区域后计算获得各样品可见-短波近红外波段(397~1 004 nm)内的光谱数据;比较运用标准正态变量变换、多元散射矫正、Savitsky-Golay(SG)平滑、小波变换、SG平滑+标准正态变量变换及SG平滑+多元散射矫正6种光谱预处理方法,竞争性自适应重加权、连续投影算法、无信息变量选择、最小角回归、遗传算法5种特征波段提取方法以及偏最小二乘法、支持向量回归、极限学习机回归、多层感知机回归及LightGBM回归5种算法所建立的定量校正模型预测性能。结果 获得最优预测性能的算法组合为SG平滑+竞争性自适应重加权特征波段选择+偏最小二乘;基于该算法组合建立的定量校正模型在破壁率区间为90%~100%的灵芝孢子粉样品预测集决定系数为0.868 2,均方根误差为0.011 7;将选定的最优算法组合应用于构建样品破壁率区间为0~100%的定量校正模型,计算测试集决定系数为0.973 1,均方根误差为0.049 3,表现出良好的泛化能力。结论 所建立的定量检测模型可以实现对灵芝孢子粉破壁率的快速、无损检测,为破壁灵芝孢子粉及其产品的质量控制提供技术支撑。
关键词:  高光谱成像  灵芝孢子粉  破壁率  化学计量学  定量校正模型
DOI:10.13748/j.cnki.issn1007-7693.20231852
分类号:R284.1
基金项目:浙江省农业(食用菌)新品种选育重大科技专项(2021C02073);浙江省重点农业企业研究院项目(2017Y20001)
A Rapid, Hyperspectral-based Method for Determining Sporoderm-broken Rate of Ganoderma Lucidum Spore Powder
PAN Zaichen1, ZHONG Yi2, FANG Ling2, QI Zhechen1, XU Jing3, LIANG Zongsuo1, LI Zhenhao2
1.Zhejiang Provincial Key Laboratory of Plant Secondary Metabolism Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;2.Zhejiang Shouxiangu Institute of Plant Medicine, Hangzhou 310012, China;3.Zhejiang Engineering Research Center of Rare Medicinal Plants, Wuyi 321200, China
Abstract:
OBJECTIVE To establish a rapid nondestructive detection method for the sporoderm-broken rate of Ganoderma lucidum spore powder by hyperspectral technology combined with chemometrics. METHODS Hyperspectral images of Ganoderma lucidum spore powder samples with different sporoderm-broken rates were collected, and spectral data in the visible-shortwave near-infrared band(397-1 004 nm) range of each sample were calculated after selecting the region of interest. Compared 6 spectral preprocessing methods[standard normal variable transformation, multivariate scattering correction, Savitsky-Golay(SG) smoothing, wavelet transform, SG smoothing+standard normal variable transformation, and SG smoothing+multivariate scattering correction], 5 characteristic band extraction methods(competitive adaptive reweighting, successive projections algorithm, uninformative variables elimination, least angle regression, and genetic algorithm), and 5 algorithms(partial least squares regression, support vector regression, extreme learning machine, multilayer perceptron, and LightGBM) for constructing quantitative correction models to predicts performance. RESULTS The optimal combination was SG smoothing+competitive adaptive reweighted feature band selection+partial least squares. The quantitative correction model established based on the algorithm combination achieved a prediction set coefficient of 0.868 2, and a root mean square error of 0.011 7 for Ganoderma lucidum spore powder samples with a sporoderm-broken rate range of 90%-100%. The selected optimal algorithm combination was applied to construct a quantitative correction model with a sporoderm-broken rate range of 0-100%, the coefficient of determination for the test set was 0.973 1 and the root mean square error was 0.049 3, showing good generalization ability. CONCLUSION The established quantitative detection model can realize the rapid and non-destructive detection of the sporoderm-broken rate of Ganoderma lucidum spore powder, which provides technical support for the quality control of Ganoderma lucidum spore powder and its products.
Key words:  hyperspectral imaging  Ganoderma lucidum spore powder  sporoderm-broken rate  chemometrics  quantitative calibration model
扫一扫关注本刊微信